Journal of Nonlinear Analysis and Optimization

Vol. 12, No. 2, (2021),

ISSN:1906-9685

EXPLORING UNUSUAL DISCOVERIES AND ANALYZING INCIDENTS IN REAL-TIME ETHEREUM TUNNELING

A. SRINIVAS Assistant Professor Department Of CSE Sree Chaitanya College of Engineering, Karimnagar

ABSTRACT:

Some urban rail vehicles and the train control and management system (TCMS) of 250 km/h Fuxing Electric Multiple Units (EMUs) have been equipped with real-time Ethernet. The train communication network is vulnerable to intrusion assaults due to the openness of the Ethernet communication standard. Thus, the real-time Ethernet-based train communication network must be equipped with a safety protection system. This research proposes an anomaly detection and attack classification-based train communication network intrusion detection system. First, the study developed a support vector machine (SVM) based anomaly detection model. The kernel function parameters of SVM are optimized using the optimization procedures of genetic algorithm-support vector machines (GA-SVM) and particle swarm optimization-support vector machines (PSO-SVM). Second, the study developed two random forest-based assault categorization models. They are the classification and regression tree (CART) and the iterative dichotomiser 3 (ID3). Subsequently, the developed intrusion detection and attack classification model is evaluated using the public data sets of the simulation train real-time Ethernet test bench and knowledge discovery and data mining-99 (KDD-99). The accuracy of intrusion detection is increased from 90.3% to 95.75% by PSO-SVM and from 90.3% to 95.85% by GA-SVM. The PSO-SVM approach required more training time than the GA-SVM algorithm and significantly more than the SVM technique in the absence of optimization. While the ID3 algorithm achieved 100% accuracy on the training set and only 32.89% accuracy on the test set, it has a poor classification accuracy of the data outside of the training set. The validity of both the CART and ID3 models has been confirmed in the attack categorization. In addition, compared to CART, the classification time for ID3 is extremely lengthy. Therefore, the thorough experimental results demonstrate that the train real-time Ethernet intrusion detection system may employ the GA-SVM model for anomalous data detection. To better complete future answers and actions, the CART model can be utilized to differentiate between the sorts of attacks once the usual data has been passed. The suggested methodology increases intrusion detection accuracy when compared to the SVM-based anomaly detection model. Furthermore, the suggested attack classification technique based on CART can increase processing speed without sacrificing classification accuracy.

I.INTRODUCTION:

With the advent of intelligent train control and management system, more and more sensors and equipment are connected to TCMS, the data transmission in TCMS is increasing rapidly, so real-time Ethernet with a high transmission rate is introduced into TCMS. The openness of the train real-time Ethernet protocol makes TCMS vulnerable to adversaryattacks. These attack methods such as port scanning, DoS attacks, and IP address spoofing may also be used in TCMS. Therefore, the introduction of Ethernet brings a threat to TCMS. Cyber-physical systems (CPSs) security has become a critical research topic to avoid key security threats faced by these applications [1]. TCMS is one kind of CPSs which are an integral system featuring strong interactions between its cyber and physical components. TCMS security requires a different strategy from traditional information

technology(IT) security. TCMS security plays a crucial part in ensuring the normal operation of the train. Once the train data and system suffer attacks, it may cause disruption to the operation, delay to the train, and even safety accidents, thus resulting in property damage and casualties. In 2003, the train signal system in Florida suffered attacks from the "SOBIG" virus, with some trains forced into delay [2]. In 2008, a subway track signal in Poland was subject to attack. The attacker exploited remote control to change the track switch, thus causing derailment to four cars [3]. In 2012, the information release system and operation scheduling system of a subway in Shanghai were targeted for attack. A large number of events indicate that the security of TCMS is worthy of more attention. To guard against potential attacks, it is essential to introduce security protection technology to defend TCMS. Representing an efficient protection technology, intrusion detection technology (IDS) is capable of identifying and judging the abnormality in the network before making a response in a targeted manner [4]. As a defense mechanism for the TCMS, intrusion detection technology performs the function of defense against attack and protection for the TCMS, to ensure the normal functioning of the train operation. In this paper, the design of the intrusion detection model in security protection technology and the parameter optimization problem of the intrusion detection model is studied in depth. In summary, our work in this paper makes the following contributions: 1) Taking into account the characteristics of the train's real-time Ethernet, the paper divides the train intrusion detection model into two modules: anomaly detection and attack classification. Considering a large amount of real-time data in TCMS, this paper models anomaly detection as a two-class classification problem with unbalanced samples. Three anomaly detection models based on support vector machines are designed, and their performance is analyzed and compared. Considering that identifying different attacks is helpful for subsequent response and processing, these paper models the attack classification as a multiclass classification problem. Unlike support vector machines, random forests employ decision trees as individual learners which can better solve multiclass classification problems. This paper designs attack classification models based on the CART algorithm and ID3 algorithm under the random forest category. 2) The paper not only used KDD-99 to test the intrusion detection model designed in this paper but also built a simple train communication network simulation platform and collected data. Use the data set of the simulation platform to perform experimental analysis and verification of the model. The rest of this paper is organized as follows: In section II, the paper reviewed the related work of IDS in other scenarios, briefly introduced the key component of IDS, and abstracted the problem model. In Section III, the anomaly detection model is designed, and particle swarm optimization and genetic algorithm are used to optimize the model parameters. Starting from the decision tree and the ensemble learning framework, an attack classification model based on random forest is designed in Section IV. Experiments and results are presented and discussed in Section V. Finally, the conclusion and prospect are given in Section VI

1.1 Objective of the project:

Real-time Ethernet has been applied to train control and management system (TCMS) of 250km/h Fuxing Electric Multiple Units (EMUs) and some urban rail vehicles. The openness of the Ethernet communication protocol poses a risk of intrusion attacks on the train communication network. It is, therefore, necessary that a safety protection technology is introduced to the train communication network based on real-time Ethernet. In this paper, a train communication network intrusion detection system based on anomaly detection and attack classification is proposed. Firstly, the paper built an anomaly detection model based on support vector machines (SVM). The particle swarm optimization-support vector machines (PSO-SVM), and genetic algorithm-support vector machines (GA-SVM) optimization algorithms are used to optimize the kernel function parameters of SVM. Secondly, the paper built two attack classification models based on random forest. They are iterative dichotomiser3 (ID3) and classification and regression tree (CART). And then, the built intrusion detection and attack classification model is tested by using the public data set knowledge discovery and data mining-99(KDD-99) and the data set of the simulation train real-time Ethernet test bench. PSO-SVM improves the intrusion detection accuracy from 90.3% to 95.75%, GA-SVM improves the detection accuracy from 90.3% to 95.85%. The training time of the PSO-SVM algorithm was higher than that of the GA-SVM algorithm, and much higher than that of the SVM, without optimization.

Both ID3 and CART models are verified valid in the attack classification, while the ID3 algorithm obtained 100% accuracy on the training set, and only 32.89% accuracy on the test set, ID3 has a poor classification accuracy of the data outside of the training set. Also, the classification time is very long for ID3 compared with CART. So the comprehensive experimental results show that the intrusion detection system of train real-time Ethernet can use the GA-SVM model for detection of abnormal data. After passing the normal data, the CART model can be used to distinguish between the types of attacks to better complete subsequent responses and operations. Compared with the anomaly detection model based on SVM, the proposed model improves intrusion detection accuracy. And the proposed attack classification algorithm based on CART can improve the computing speed while ensuring the precision of classification.

II.LITERATURE SURVEY:

"Cyber security threats and vulnerabilities: A systematic mapping study,"

There has been a tremendous increase in research in the area of cyber security to support cyber applications and to avoid key security threats faced by these applications. The goal of this study is to identify and analyze the common cyber security vulnerabilities. To achieve this goal, a systematic mapping study was conducted, and in total, 78 primary studies were identified and analyzed. After a detailed analysis of the selected studies, we identified the important security vulnerabilities and their frequency of occurrence. Data were also synthesized and analyzed to present the venue of publication, country of publication, key targeted infrastructures and applications. The results show that the security approaches mentioned so far only target security in general, and the solutions provided in these studies need more empirical validation and real implementation. In addition, our results show that most of the selected studies in this review targeted only a few common security vulnerabilities such as phishing, denial-of-service and malware. However, there is a need, in future research, to identify the key cyber security vulnerabilities, targeted/victimized applications, mitigation techniques and infrastructures, so that researchers and practitioners could get a better insight into it.

"A review of cyber security risk assessment methods for SCADA systems,"

This paper reviews the state of the art in cyber security risk assessment of Supervisory Control and Data Acquisition (SCADA) systems. We select and in-detail examine twenty-four risk assessment methods developed for or applied in the context of a SCADA system. We describe the essence of the methods and then analyse them in terms of aim; application domain; the stages of risk management addressed; key risk management concepts covered; impact measurement; sources of probabilistic data; evaluation and tool support. Based on the analysis, we suggest an intuitive scheme for the categorisation of cyber security risk assessment methods for SCADA systems. We also outline five research challenges facing the domain and point out the approaches that might be taken.

"Safety status and risk analysis of industrial control systems—one of the safety risk analyses of ICS industrial control systems,"

The migration of modern industrial control systems toward information and communication technologies exposes them to cyber-attacks that can alter the way they function, thereby causing adverse consequences on the system and its environment. It has consequently become crucial to consider security risks in traditional safety risk analyses for industrial systems controlled by modern industrial control system. We propose in this article a new framework for safety and security joint risk analysis for industrial control systems. S-cube (for supervisory control and data acquisition safety and security joint modeling) is a new model-based approach that enables, thanks to a knowledge base, formal modeling of the physical and functional architecture of cyber-physical systems and automatic generation of a qualitative and quantitative analysis encompassing safety risks (accidental) and security risks (malicious). We first give the principle and rationale of S-cube and then we illustrate its inputs and outputs on a case study.

"WADeS: A tool for distributed denial of service attack detection,"

WADES: A Tool for Distributed Denial of Service Attack Detection. (August 2002) Anu Ramanathan, B.Tech., Indian Institute of Technology, Madras Co-Chairs of Advisory Committee: Dr. A.L. Narasimha Reddy Dr. Marina Vannucci The increasing popularity of web-based

applications has led to several critical services being provided over the Internet. This has made it imperative to monitor the network traffic so as to prevent malicious attackers from depleting the network's resources and denying service to legitimate users. In our research work, we propose WADES (Wavelet based Attack Detection Signatures), an approach to detect a Distributed Denial of Service Attack using Wavelet methods. We develop a new framework that uses LRU cache filtering to capture the high bandwidth flows followed by computation of wavelet variance on the aggregate miss traffic. The introduction of attack traffic in the network would elicit changes in the wavelet variance. This is combined with thresholding methods to enable attack detection. Sampling techniques can be used to tailor the cost of our detection mechanism. The mechanism we suggest is independent of routing information, thereby making attack detection immune to IP address spoofing. Using simulations and quantitative measures, we find that our mechanism works successfully on several kinds of attacks. We also use statistical methods to validate the results obtained.

"Design and analysis of multimodel-based anomaly intrusion detection systems in industrial process automation,"

Industrial process automation is undergoing an increased use of information communication technologies due to high flexibility interoperability and easy administration. But it also induces new security risks to existing and future systems. Intrusion detection is a key technology for security protection. However, traditional intrusion detection systems for the IT domain are not entirely suitable for industrial process automation. In this paper, multiple models are constructed by comprehensively analyzing the multidomain knowledge of field control layers in industrial process automation, with consideration of two aspects: physics and information. And then, a novel multimodel-based anomaly intrusion detection system with embedded intelligence and resilient coordination for the field control system in industrial process automation is designed. In the system, an anomaly detection based on multimodel is proposed, and the corresponding intelligent detection algorithms are designed. Furthermore, to overcome the disadvantages of anomaly detection, a classifier based on an intelligent hidden Markov model, is designed to differentiate the actual attacks from faults. Finally, based on a combination simulation platform using optimized performance network engineering tool, the detection accuracy and the real-time performance of the proposed intrusion detection system are analyzed in detail. Experimental results clearly demonstrate that the proposed system has good performance in terms of high precision and good real-time capability.

"A novel online detection method of data injection attack against dynamic state estimation in smart grid,"

Dynamic state estimation is usually employed to provide real-time and effective supervision for the smart grid (SG) operation. However, dynamic state estimators have been recently found vulnerable to data injection attack, which are misled without posing any anomalies to bad data detection (BDD). To improve the robustness of the SG, it is firstly necessary to find the system vulnerability by developing an imperfect data injection attack strategy with minimum attack residual increment. In this attack strategy, these targeted state variables are chosen by a designed search approach, and their values are then determined by solving an optimal problem based on particle swarm optimization (PSO) algorithm. Considering the characters of traditional chi-square detection method and history statistical information of state variables without being attacked, a new online chi-square detection method associated with two kinds of state estimates is proposed to make up for the system vulnerability. Numerical simulations confirm the feasibility and effectiveness of the proposed method.

"Application of data driven methods for condition monitoring maintenance,"

Nowadays, there is an increasing demand for Condition Based Maintenance (CBM) activities as timedirected maintenance are observed to be inefficient in many situations. CBM is a maintenance strategy based on collecting information concerning the working condition of equipment, such as vibration intensity, temperature, pressure, etc., related to the system degradation or status in order to prevent its failure and to determine the optimal maintenance. Prognosis is an important part of CBM. Different methodologies can be used to perform prognosis and can be classified as: model-based or data-driven. Model-based methods use physical models of the process or statistical estimation methods based on state observers, to this approach belong Kalman filters, particle filters, etc. On the

other hand, data-driven methods only makes use of the available monitoring data which to train a learning algorithm. In this paper a data-driven approach is presented to detect abnormal behaviours in industrial equipment. The suggested approach combines two multivariate analysis techniques: principal component analysis (PCA) and partial least squares (PLS). With PCA the most important contributors to characterize the condition of the equipment are found. Next, PLS is used to predict the system state and detect abnormal behaviour. This behaviour can lead to perform maintenance tasks. Finally, an example of application to an asynchronous generator is presented.

"Distributed attack detection in a water treatment plant: Method and case study,"

The rise in attempted and successful attacks on critical infrastructure, such as power grid and water treatment plants, has led to an urgent need for the creation and adoption of methods for detecting such attacks often launched either by insiders or state actors. This paper focuses on one such method that aims at the detection of attacks that compromise one or more actuators and sensors in a plant either through successful intrusion in the plant's communication network or directly through the plant computers. The method, labelled as Distributed Attack Detection (DAD), detects attacks in real-time by identifying anomalies in the behavior of the physical process in the plant. Anomalies are identified by using monitors that are implementations of invariants derived from the plant design. Each invariant must hold either throughout the plant operation, or when the plant is in a given state. The effectiveness of DAD was assessed experimentally on an operational water treatment plant named SWaT that is a near-replica of commercially available large treatment plants. The method used in DAD was found to be effective in detecting stealthy and coordinated attacks.

III.SYSTEM ANALYSIS

3.1 Existing System

In the existing system, the video surveillance system is designed for human operators to observe protected Space or to record video data for further detection. But watching surveillance video is a laborintensive need to be controlled. It is also a very tedious and time-consuming job and human observers can easily lose attention.

Disadvantages of Existing System:

- 1. Less Prediction.
- 2. Security is less.
- **3.** Less accuracy

3.2 Proposed System

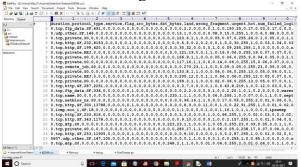
In this research, we investigate two important aspects of the intrusion detection problem: anomaly detection and attack categorization. Following this, comparable model designs were created.implemented using SVMs and a samplingMachine learning forest algorithm. Furthermore, a framework for parameter optimization using particle swarm optimization and evolutionary algorithms was developed.experiment with real-time Ethernet intrusion detection platform, conducting associated studies, and validating themodel..

Advantages of Proposed System:

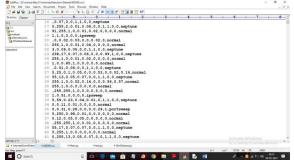
- 1. Security is more.
- 2. More Prediction.
- 3. High accuracy

IV.SCREENSHOTS:

Anomaly Detection and Attack Classification for Train Real-time Ethernet


In this paper author is using machine learning algorithm to detect anomaly and to classify attacks and to implement this concept author has used normal SVM, SVM-PSO (particle swarm optimization) and SVM-GA (Genetic Algorithm) to build anomaly detection and then used Random Forest and CART or decision tree algorithm to classify attacks.

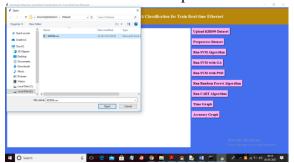
PSO and GA are the feature selection algorithms which optimize dataset by selecting attributes with high weight and ignore all those attributes which has less weight so by using this PSO and GA we can select important features from dataset and this algorithms can also reduce dataset size just be selecting important attributes.


PSO-SVM and GA-SVM is giving better prediction accuracy compare to normal SVM but its execution time is high.

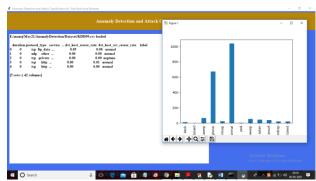
To implement this project author has used KDD99 dataset and we are also using same dataset and then we are training above algorithms with this dataset. After training we are prediction train and test data and then calculating correctly predicting accuracy and execution time of all algorithms.

Below screen showing dataset screen shots

In above dataset screen first row contains dataset column names and remaining rows contains dataset values. In last column we have labels such as attack name or normal


In above screen in each row we have values as NORMAL, attack names like Neptune or portsweep and similarly many more attacks are there in dataset. We will use above dataset to train all algorithms and then calculate accuracy and execution time of each algorithm.

SCREEN SHOTS

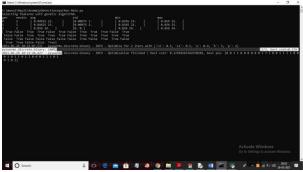

To run project double click on 'run.bat' file to get below screen

In above screen click on 'Upload KDD99 Dataset' button to upload dataset


In above screen selecting and uploading 'KDD99.csv' file and then click on 'Open' button to load dataset and to get below screen

In above screen in text area we can see dataset loaded and in dataset we can see some non-numeric values are there and machine learning algorithms will not accept non-numeric values so we need tp preprocess dataset to convert non-numeric values to numeric by assigning ID to each unique values and in above graph x-axis contains attack names and y-axis contains count of those attacks. Now close above graph and then click on 'Preprocess Dataset' button to process dataset

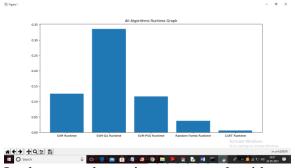

In above screen we can see entire dataset is converted to numeric data and now click on 'Run SVM Algorithm' button to train SVM to detect Anomaly

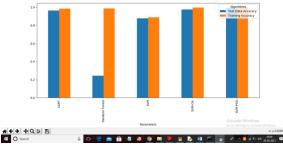

In above screen SVM is trained and got its training accuracy as 0.88% and test data accuracy as 0.87% and it took 0.12 seconds to train SVM and now click on 'Run SVM with GA' button to train SVM by selecting optimize features using SVM

```
Control for Change (Control and Control an
```


In above screen we can see Genetic Algorithm starts selecting features and after optimizing features will get below screen

In above screen in selected text we can see dataset contains total 41 columns or features and after applying GA those columns reduce to 24 and then we got 0.99% training accuracy and 0.97% on test data and its took 0.33 seconds and now click on 'Run SVM with PSO' button to train SVM with PSO features


In above screen PYSWARM PSO package start selecting optimize features from dataset and then will get below screen


In above screen in selected text we can see dataset contains 41 columns and after applying PSO columns size reduce to 20 and we got training PSO accuracy as 0.99% and testing accuracy also as 0.99% and its took execution time as 0.11 seconds. Now click on 'Run Random Forest Algorithm' to build classification model and then calculate accuracy

In above screen in selected text we can see random forest got 0.98% accuracy on train data and 0.24% accuracy on test and similarly Cart algorithm got 0.98 and 0.96% accuracy on train and test data and now click on 'Time Graph' button to get below graph

In above graph x-axis represents algorithm names and y-axis represents execution time and in above graph we can see SVM with GA and PSO took more execution time compare to other algorithms and now click on 'Accuracy Graph' button to get below graph

In above graph x-axis represents algorithm names and y-axis represents accuracy of train and test data and in all algorithms SVM with GA and SVM with PSO has got more accuracy compare to other algorithms.

V.CONCLUSION:

A study on anomaly detection and attack classification, two important aspects of the intrusion detection problem, was done for this work. Next, using machine learning's random forests approach and support vector machines, related models were constructed. Additionally, the implementation of evolutionary algorithms and particle swarm optimization for parameter optimization was completed, along with the construction of an experimental platform for real-time Ethernet intrusion detection on a train, associated tests, and model verification. The following are this paper's accomplishments: It has been demonstrated through studies that the train real-time Ethernet can efficiently perform anomaly detection and attack categorization using the PSO-SVM, GA-SVM, and CART algorithms. The PSO-SVM and GA-SVM anomaly models exhibit a linear relationship in terms of time complexity, whereas the SVM anomaly detection model, ID3, and CART attack classification model exhibit constant characteristics. Additionally, the time required by the PSO-SVM model is significantly higher than that of the GA-SVM model. The open connectivity features of Train's realtime Ethernet include the ongoing advancement of network communication technology and the rising frequency of related attacks and anomalous circumstances. Attacking strategies in the never-ending game of chance with intrusion detection are becoming more nuanced as computer technology advances. Certain attack types can't be recognized by packet and traffic characteristics because they conceal the assault in application layer data, MIB library information, etc. The impact of such covert attacks on train communication data, equipment, databases, and other features might be discovered through follow-up research, which would then serve as the foundation for developing a new attack and defensive model to guarantee the real-time Ethernet security of the train.

REFERENCES:

- [1] M. Humayun, M. Niazi, N. Z. Jhanjhi, M. Alshayeb, and S. Mahmood, "Cyber security threats and vulnerabilities: A systematic mapping study," Arabian J. Sci. Eng., vol. 45, no. 3, p. 19, Apr. 2020, doi: 10.1007/s13369-019-04319-2.
- [2] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, and K. Stoddart, "A review of cyber security risk assessment methods for SCADA systems," Comput. Secur., vol. 56, no. 1, pp. 1–27, Feb. 2016, doi: 10.1016/j.cose.2015.09.009.

- [3] S. Zhang, "Safety status and risk analysis of industrial control systems—one of the safety risk analyses of ICS industrial control systems," Netw. Comput. Secur., vol. 1, no. 5, pp. 15–19, Jun. 2016, doi: 10.3969/j.issn.1671-0428.2012.01.006.
- [4] J. F. Xue, Intrusion Detection Technology. Beijing, China: Posts and Telecom Press, 2016.
- [5] J. P. Anderson, "Computer security threat monitoring and surveillance," James P. Anderson Company, Washington, DC, USA, Tech. Rep., 1980.
- [6] D. Anderson, T. Frivold, and A. Valdes, Next-Generation Intrusion Detection Expert System (NIDES): A Summary. 1995.
- [7] A. W. Ramanathan, "WADeS: A tool for distributed denial of service attack detection," M.S. thesis, Dept. Electron. Eng., Calgary, College Eng., Univ. Texas Austin, Austin, TX, USA, 2002.
- [8] C. J. Zhou, S. Huang, N. Xiong, S. H. Yang, H. Li, Y. Qin, and X. Li, "Design and analysis of multimodel-based anomaly intrusion detection systems in industrial process automation," IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 10, pp. 2216–2468, 2017, doi: 10.1109/TSMC.2015.2415763.
- [9] R. Chen, X. Li, H. Zhong, and M. Fei, "A novel online detection method of data injection attack against dynamic state estimation in smart grid," Neurocomputing, vol. 344, pp. 73–81, Jun. 2019, doi: 10.1016/j.neucom.2018.09.094.
- [10] I. Marton, A. I. Sánchez, S. Carlos, and S. Martorell, "Application of data driven methods for condition monitoring maintenance," Chem. Eng. Trans., vol. 33, no. 10, pp. 301–306, 2013.
- [11] S. Adepu and A. P. Mathur, "Distributed attack detection in a water treatment plant: Method and case study," IEEE Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 1–14, Jan./Feb. 2018, doi: 10.1109/TDSC.2018.2875008.
- [12] M. Wu and Y. B. Moon, "Intrusion detection system for cybermanufacturing system," J. Manuf. Sci. Eng., vol. 141, no. 3, pp. 7–31, Mar. 2019, doi: 10.1115/1.4042053.
- [13] H. Zhao, "Research on abnormal detection algorithm of industrial control system," Metall. Automat. Res. Design Inst., Beijing, China, Tech. Rep.,
- [14] S. Das, A. M. Mahfouz, D. Venugopal, and S. Shiva, "DDoS intrusion detection through machine learning ensemble," in Proc. IEEE 19th Int. Conf. Softw. Qual., Rel. Secur. Companion (ORS-C), Sofia, Bulgaria, Jul. 2019, pp. 471–477.
- [15] F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation-based anomaly detection," ACM Trans. Knowl. Discovery Data, vol. 6, no. 1, pp. 1–39, Mar. 2012, doi: 10.1145/2133360.2133363.
- [16] I. S. Thaseen, C. A. Kumar, and A. Ahmad, "Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers," Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3357–3368, Apr. 2019.
- [17] I. S. Thaseen and C. A. Kumar, "Intrusion detection model using fusion of chi-square feature selection and multi class SVM," J. King Saud Univ. Comput. Inf. Sci., vol. 29, no. 4, pp. 462–472, Oct. 2017, doi: 10.1016/j.jksuci.2015.12.004.
- [18] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Adv. Eng. Softw., vol. 95, no. 5, pp. 16–27, Jan. 2016, doi: 10.1016/j.advengsoft.2016.01.008.
- [19] H. Esquivel and T. Esquivel, "Router-level spam filtering using tcp fingerprints: Architecture and measurement-based evaluation," in Proc. 6th Conf. Email Anti-Spam (CEAS). Mountain View, CA, USA: IEEE, 2009, pp. 1–10.
- [20] J. Kim, N. Shin, S. Y. Jo, and S. Hyun Kim, "Method of intrusion detection using deep neural network," in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Feb. 2017, pp. 313–316.
- [21] H. Y. Wang, J. H. Li, and L. Feng, "Overview of support vector mechanism and algorithm research," Comput. Appl. Res., vol. 31, no. 5, pp. 1281–1286, Dec. 2014.
- [22] S. H. Kok, A. Azween, and N. Jhanjhi, "Evaluation metric for cryptoransomware detection using machine learning," J. Inf. Secur. Appl., vol. 55, Dec. 2020, Art. no. 102646, doi: 10.1016/j.jisa.2020.102646.
- [23] J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Adv. Large Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.
- [24] C. E. Rasmussen, Gaussian Processes in Machine Learning (Lecture Notes in Computer Science) vol. 3176. Feb. 2003, p. 14.

- [25] Z. H. Zhou, Machine Learning. Beijing, China: Tsinghua Univ. Press, 2016, pp. 121–139 and 298-300. [26] [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/
- [27] A. A. Aburomman and M. B. I. Reaz, "A novel SVM-kNN-PSO ensemble method for intrusion detection system," Appl. Soft Comput., vol. 38, pp. 360–372, Jan. 2016, doi: 10.1016/j.asoc.2015.10.011. [28] W. Feng, Q. Zhang, G. Hu, and J. X. Huang, "Mining network data for intrusion detection through combining SVMs with ant colony networks," Future Gener. Comput. Syst., vol. 37, pp. 127–140, Jul. 2014, doi: 10.1016/j.future.2013.06.027.
- [29] I. Manzoor and N. Kumar, "A feature reduced intrusion detection system using ANN classifier," Expert Syst. Appl., vol. 88, pp. 249–257, Dec. 2017, doi: 10.1016/j.eswa.2017.07.005.
- [30] P. Casas, J. Mazel, and P. Owezarski, "Unsupervised network intrusion detection systems: Detecting the unknown without knowledge," Comput. Commun., vol. 35, no. 7, pp. 772–783, Apr. 2012, doi: 10.1016/j.comcom.2012.01.016.
- [31] G. Qu, S. Hariri, and M. Yousif, "A new dependency and correlation analysis for features," IEEE Trans. Knowl. Data Eng., vol. 17, no. 9, pp. 1199–1207, Sep. 2005, doi: 10.1109/TKDE.2005.136.